| | | |

Redes Neurais Artificiais

4 Redes Informadas pela Física

Ajude a manter o site livre, gratuito e sem propagandas. Colabore!

4.1 Aplicação: Equação de Poisson

Vamos criar uma MLP para resolver o problema de Poisson1111endnote: 11Siméon Denis Poisson, 1781 - 1840, matemático francês. Fonte: Wikipédia:Siméon Denis Poisson.

Δu=f,𝒙𝒟=(1,1)2, (4.1a)
u=0,𝒙D, (4.1b)

com fonte dada

f(x1,x2)=π2sen(πx1)sen(πx2). (4.2)

No treinamento, vamos usar a função erro baseada no resíduo da equação de Poisson (4.1a) e nas condições de contorno (4.1b). Mais especificamente, assumimos a função erro

ε:=1ns,ins=1ns,in|(u~(s))|2resíduo+1ns,ccs=1ns,cc|u~s|2c.c., (4.3)

onde o resíduo é definido por

(u~(s)):=f+Δu~(s). (4.4)

A cada época, conjuntos de pontos {𝒙(s)}s=1ns,in𝒟 e {𝒙(s)}s=1ns,cc𝒟 são randomicamente gerados com distribuição uniforme.

Observação 4.1.1.

O problema de Poisson (4.1) tem solução analítica

u(x1,x2)=sen(πx1)sen(πx2). (4.5)

É importante observar que o treinamento da MLP não depende de conhecermos a solução. Aqui, vamos usá-la apenas para compararmos a solução MLP com a analítica.

Refer to caption
Figura 4.1: Aproximação MLP da função solução do problema de Poisson (4.1). Linhas: isolinhas da solução analítica. Mapa de cores: solução MLP. Estrelas: pontos de treinamentos na última época.
Código 13: py_pinn_poisson
1  import torch
2  from torch import pi, sin
3
4  # modelo
5  nn = 50
6  model = torch.nn.Sequential()
7  model.add_module('layer_1', torch.nn.Linear(2,nn))
8  model.add_module('fun_1', torch.nn.Tanh())
9  model.add_module('layer_2', torch.nn.Linear(nn,nn))
10  model.add_module('fun_2', torch.nn.Tanh())
11  model.add_module('layer_3', torch.nn.Linear(nn,nn))
12  model.add_module('fun_3', torch.nn.Tanh())
13  model.add_module('layer_4', torch.nn.Linear(nn,1))
14
15  # otimizador
16  optim = torch.optim.SGD(model.parameters(),
17                          lr = 1e-3, momentum=0.9)
18
19  # fonte
20  def f(x1, x2):
21      return 2.*pi**2*sin(pi*x1)*sin(pi*x2)
22
23  # treinamento
24  ns_in = 400
25  ns_cc = 20
26  nepochs = 50000
27  tol = 1e-3
28
29  ## pontos de validação
30  ns_val = 50
31  x1_val = torch.linspace(-1., 1., steps=ns_val)
32  x2_val = torch.linspace(-1., 1., steps=ns_val)
33  X1_val, X2_val = torch.meshgrid(x1_val, x2_val, indexing='ij')
34  X_val = torch.hstack((X1_val.reshape(ns_val**2,1),
35                        X2_val.reshape(ns_val**2,1)))
36
37  for epoch in range(nepochs):
38
39      # forward
40      X1 = 2.*torch.rand(ns_in, 1) - 1.
41      X2 = 2.*torch.rand(ns_in, 1) - 1.
42      X = torch.hstack((X1, X2))
43      X.requires_grad = True
44
45      U = model(X)
46
47      # gradientes
48      D1U = torch.autograd.grad(
49          U, X,
50          grad_outputs=torch.ones_like(U),
51          retain_graph=True,
52          create_graph=True)[0]
53      D2UX1 =  torch.autograd.grad(
54          D1U[:,0:1], X,
55          grad_outputs=torch.ones_like(D1U[:,0:1]),
56          retain_graph=True,
57          create_graph=True)[0]
58      D2UX2 =  torch.autograd.grad(
59          D1U[:,1:2], X,
60          grad_outputs=torch.ones_like(D1U[:,1:2]),
61          retain_graph=True,
62          create_graph=True)[0]
63
64      # fonte
65      F = f(X1, X2)
66
67      # loss pts internos
68      lin = torch.mean((F + D2UX1[:,0:1] + D2UX2[:,1:2])**2)
69
70      # contornos
71      ## c.c. 1
72      X1 = 2.*torch.rand(ns_cc, 1) - 1.
73      Xcc1 = torch.hstack((X1, -torch.ones((ns_cc,1))))
74      Ucc1 = model(Xcc1)
75
76      ## c.c. 3
77      Xcc3 = torch.hstack((X1, torch.ones((ns_cc,1))))
78      Ucc3 = model(Xcc3)
79
80      ## c.c. 4
81      X2 = 2.*torch.rand(ns_cc, 1) - 1.
82      Xcc4 = torch.hstack((-torch.ones((ns_cc,1)), X2))
83      Ucc4 = model(Xcc4)
84
85      ## c.c. 2
86      Xcc2 = torch.hstack((torch.ones((ns_cc,1)), X2))
87      Ucc2 = model(Xcc2)
88
89      # loss cc
90      lcc = 1./(4.*ns_cc) * torch.sum(Ucc1**2 + Ucc2**2 + Ucc3**2 + Ucc4**2)
91
92      # loss
93      loss = lin + lcc
94
95      if ((epoch % 500 == 0) or (loss.item() < tol)):
96          print(f'{epoch}: loss = {loss.item():.4e}')
97
98          if (loss.item() < tol):
99              break
100
101      optim.zero_grad()
102      loss.backward()
103      optim.step()

4.1.1 Exercícios

E. 4.1.1.

Crie uma MLP para resolver

Δu=0,𝒙D=(0,1)2, (4.6)
u(x1,0)=x1(1x1),0x11, (4.7)
u(1,x2)=x2(1x2),0<x21, (4.8)
u(x1,1)=x1(1x1),0x1<1, (4.9)
u(0,x2)=x2(1x2),0<x2<1. (4.10)
Resposta.

Dica: solução analítica u(x1,x2)=x1(1x1)x2(1x2).


Envie seu comentário

Aproveito para agradecer a todas/os que de forma assídua ou esporádica contribuem enviando correções, sugestões e críticas!

Opcional. Preencha seu nome para que eu possa lhe contatar.
Opcional. Preencha seu e-mail para que eu possa lhe contatar.
As informações preenchidas são enviadas por e-mail para o desenvolvedor do site e tratadas de forma privada. Consulte a política de uso de dados para mais informações.

Licença Creative Commons
Este texto é disponibilizado nos termos da Licença Creative Commons Atribuição-CompartilhaIgual 4.0 Internacional. Ícones e elementos gráficos podem estar sujeitos a condições adicionais.

Redes Neurais Artificiais

4 Redes Informadas pela Física

Ajude a manter o site livre, gratuito e sem propagandas. Colabore!

4.1 Aplicação: Equação de Poisson

Vamos criar uma MLP para resolver o problema de Poisson1111endnote: 11Siméon Denis Poisson, 1781 - 1840, matemático francês. Fonte: Wikipédia:Siméon Denis Poisson.

Δu=f,𝒙𝒟=(1,1)2, (4.1a)
u=0,𝒙D, (4.1b)

com fonte dada

f(x1,x2)=π2sen(πx1)×sen(πx2). (4.2)

No treinamento, vamos usar a função erro baseada no resíduo da equação de Poisson (4.1a) e nas condições de contorno (4.1b). Mais especificamente, assumimos a função erro

ε:=1ns,ins=1ns,in|(u~(s))|2resíduo+1ns,ccs=1ns,cc|u~s|2c.c., (4.3)

onde o resíduo é definido por

(u~(s)):=f+Δu~(s). (4.4)

A cada época, conjuntos de pontos {𝒙(s)}s=1ns,in𝒟 e {𝒙(s)}s=1ns,cc𝒟 são randomicamente gerados com distribuição uniforme.

Observação 4.1.1.

O problema de Poisson (4.1) tem solução analítica

u(x1,x2)=sen(πx1)sen(πx2). (4.5)

É importante observar que o treinamento da MLP não depende de conhecermos a solução. Aqui, vamos usá-la apenas para compararmos a solução MLP com a analítica.

Refer to caption
Figura 4.1: Aproximação MLP da função solução do problema de Poisson (4.1). Linhas: isolinhas da solução analítica. Mapa de cores: solução MLP. Estrelas: pontos de treinamentos na última época.
Código 13: py_pinn_poisson
1  import torch
2  from torch import pi, sin
3
4  # modelo
5  nn = 50
6  model = torch.nn.Sequential()
7  model.add_module('layer_1', torch.nn.Linear(2,nn))
8  model.add_module('fun_1', torch.nn.Tanh())
9  model.add_module('layer_2', torch.nn.Linear(nn,nn))
10  model.add_module('fun_2', torch.nn.Tanh())
11  model.add_module('layer_3', torch.nn.Linear(nn,nn))
12  model.add_module('fun_3', torch.nn.Tanh())
13  model.add_module('layer_4', torch.nn.Linear(nn,1))
14
15  # otimizador
16  optim = torch.optim.SGD(model.parameters(),
17                          lr = 1e-3, momentum=0.9)
18
19  # fonte
20  def f(x1, x2):
21      return 2.*pi**2*sin(pi*x1)*sin(pi*x2)
22
23  # treinamento
24  ns_in = 400
25  ns_cc = 20
26  nepochs = 50000
27  tol = 1e-3
28
29  ## pontos de validação
30  ns_val = 50
31  x1_val = torch.linspace(-1., 1., steps=ns_val)
32  x2_val = torch.linspace(-1., 1., steps=ns_val)
33  X1_val, X2_val = torch.meshgrid(x1_val, x2_val, indexing='ij')
34  X_val = torch.hstack((X1_val.reshape(ns_val**2,1),
35                        X2_val.reshape(ns_val**2,1)))
36
37  for epoch in range(nepochs):
38
39      # forward
40      X1 = 2.*torch.rand(ns_in, 1) - 1.
41      X2 = 2.*torch.rand(ns_in, 1) - 1.
42      X = torch.hstack((X1, X2))
43      X.requires_grad = True
44
45      U = model(X)
46
47      # gradientes
48      D1U = torch.autograd.grad(
49          U, X,
50          grad_outputs=torch.ones_like(U),
51          retain_graph=True,
52          create_graph=True)[0]
53      D2UX1 =  torch.autograd.grad(
54          D1U[:,0:1], X,
55          grad_outputs=torch.ones_like(D1U[:,0:1]),
56          retain_graph=True,
57          create_graph=True)[0]
58      D2UX2 =  torch.autograd.grad(
59          D1U[:,1:2], X,
60          grad_outputs=torch.ones_like(D1U[:,1:2]),
61          retain_graph=True,
62          create_graph=True)[0]
63
64      # fonte
65      F = f(X1, X2)
66
67      # loss pts internos
68      lin = torch.mean((F + D2UX1[:,0:1] + D2UX2[:,1:2])**2)
69
70      # contornos
71      ## c.c. 1
72      X1 = 2.*torch.rand(ns_cc, 1) - 1.
73      Xcc1 = torch.hstack((X1, -torch.ones((ns_cc,1))))
74      Ucc1 = model(Xcc1)
75
76      ## c.c. 3
77      Xcc3 = torch.hstack((X1, torch.ones((ns_cc,1))))
78      Ucc3 = model(Xcc3)
79
80      ## c.c. 4
81      X2 = 2.*torch.rand(ns_cc, 1) - 1.
82      Xcc4 = torch.hstack((-torch.ones((ns_cc,1)), X2))
83      Ucc4 = model(Xcc4)
84
85      ## c.c. 2
86      Xcc2 = torch.hstack((torch.ones((ns_cc,1)), X2))
87      Ucc2 = model(Xcc2)
88
89      # loss cc
90      lcc = 1./(4.*ns_cc) * torch.sum(Ucc1**2 + Ucc2**2 + Ucc3**2 + Ucc4**2)
91
92      # loss
93      loss = lin + lcc
94
95      if ((epoch % 500 == 0) or (loss.item() < tol)):
96          print(f'{epoch}: loss = {loss.item():.4e}')
97
98          if (loss.item() < tol):
99              break
100
101      optim.zero_grad()
102      loss.backward()
103      optim.step()

4.1.1 Exercícios

E. 4.1.1.

Crie uma MLP para resolver

Δu=0,𝒙D=(0,1)2, (4.6)
u(x1,0)=x1(1x1),0x11, (4.7)
u(1,x2)=x2(1x2),0<x21, (4.8)
u(x1,1)=x1(1x1),0x1<1, (4.9)
u(0,x2)=x2(1x2),0<x2<1. (4.10)
Resposta.

Dica: solução analítica u(x1,x2)=x1(1x1)x2(1x2).


Envie seu comentário

Aproveito para agradecer a todas/os que de forma assídua ou esporádica contribuem enviando correções, sugestões e críticas!

Opcional. Preencha seu nome para que eu possa lhe contatar.
Opcional. Preencha seu e-mail para que eu possa lhe contatar.
As informações preenchidas são enviadas por e-mail para o desenvolvedor do site e tratadas de forma privada. Consulte a política de uso de dados para mais informações.

Licença Creative Commons
Este texto é disponibilizado nos termos da Licença Creative Commons Atribuição-CompartilhaIgual 4.0 Internacional. Ícones e elementos gráficos podem estar sujeitos a condições adicionais.

Pedro H A Konzen
| | | |