Ajude a manter o site livre, gratuito e sem propagandas. Colabore!
Referências
[AÖ10]D. Ağırseven and T. Öziş (2010)An analytical study for fisher type equations by using homotopy perturbation method.
Computers & Mathematics with Applications60 (3), pp. 602–609.
External Links: ISSN 0898-1221,
Document,
LinkCited by: Exemplo 4.3.1,
Redes Neurais para Equações Diferenciais.
[CWW+21]S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis (2021-04)Physics-informed neural networks for heat transfer problems.
Journal of Heat Transfer143 (6), pp. 060801.
External Links: ISSN 0022-1481,
Document,
Link,
https://asmedigitalcollection.asme.org/heattransfer/article-pdf/143/6/060801/6688635/ht_143_06_060801.pdfCited by: Capítulo 1,
Redes Neurais para Equações Diferenciais.
[FGM+23]F. Fernández de la Mata, A. Gijón, M. Molina-Solana, and J. Gómez-Romero (2023)Physics-informed neural networks for data-driven simulation: advantages, limitations, and opportunities.
Physica A: Statistical Mechanics and its Applications610, pp. 128415.
External Links: ISSN 0378-4371,
Document,
LinkCited by: Redes Neurais para Equações Diferenciais.
[GBC16]I. Goodfellow, Y. Bengio, and A. Courville (2016)Deep learning.
Adaptive Computation and Machine Learning series, MIT Press.
External Links: ISBN 9780262337373,
LCCN 2016022992,
LinkCited by: Redes Neurais para Equações Diferenciais.
[HAY09]S.S. Haykin (2009)Neural networks and learning machines.
Pearson International Edition, Pearson.
External Links: ISBN 9780131293762,
LinkCited by: Redes Neurais para Equações Diferenciais.
[MJK20]Z. Mao, A. D. Jagtap, and G. E. Karniadakis (2020)Physics-informed neural networks for high-speed flows.
Computer Methods in Applied Mechanics and Engineering360, pp. 112789.
External Links: ISSN 0045-7825,
Document,
LinkCited by: Capítulo 1,
Redes Neurais para Equações Diferenciais.
[RPK19]M. Raissi, P. Perdikaris, and G.E. Karniadakis (2019)Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics378, pp. 686–707.
External Links: ISSN 0021-9991,
Document,
LinkCited by: Capítulo 1,
Redes Neurais para Equações Diferenciais.
[VBB22]S. R. Vadyala, S. N. Betgeri, and N. P. Betgeri (2022)Physics-informed neural network method for solving one-dimensional advection equation using pytorch.
Array13, pp. 100110.
External Links: ISSN 2590-0056,
Document,
LinkCited by: Capítulo 1,
Redes Neurais para Equações Diferenciais.
Envie seu comentário
Aproveito para agradecer a todas/os que de forma assídua ou esporádica contribuem enviando correções, sugestões e críticas!
Ajude a manter o site livre, gratuito e sem propagandas. Colabore!
Referências
[AÖ10]D. Ağırseven and T. Öziş (2010)An analytical study for fisher type equations by using homotopy perturbation method.
Computers & Mathematics with Applications60 (3), pp. 602–609.
External Links: ISSN 0898-1221,
Document,
LinkCited by: Exemplo 4.3.1,
Redes Neurais para Equações Diferenciais.
[CWW+21]S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis (2021-04)Physics-informed neural networks for heat transfer problems.
Journal of Heat Transfer143 (6), pp. 060801.
External Links: ISSN 0022-1481,
Document,
Link,
https://asmedigitalcollection.asme.org/heattransfer/article-pdf/143/6/060801/6688635/ht_143_06_060801.pdfCited by: Capítulo 1,
Redes Neurais para Equações Diferenciais.
[FGM+23]F. Fernández de la Mata, A. Gijón, M. Molina-Solana, and J. Gómez-Romero (2023)Physics-informed neural networks for data-driven simulation: advantages, limitations, and opportunities.
Physica A: Statistical Mechanics and its Applications610, pp. 128415.
External Links: ISSN 0378-4371,
Document,
LinkCited by: Redes Neurais para Equações Diferenciais.
[GBC16]I. Goodfellow, Y. Bengio, and A. Courville (2016)Deep learning.
Adaptive Computation and Machine Learning series, MIT Press.
External Links: ISBN 9780262337373,
LCCN 2016022992,
LinkCited by: Redes Neurais para Equações Diferenciais.
[HAY09]S.S. Haykin (2009)Neural networks and learning machines.
Pearson International Edition, Pearson.
External Links: ISBN 9780131293762,
LinkCited by: Redes Neurais para Equações Diferenciais.
[MJK20]Z. Mao, A. D. Jagtap, and G. E. Karniadakis (2020)Physics-informed neural networks for high-speed flows.
Computer Methods in Applied Mechanics and Engineering360, pp. 112789.
External Links: ISSN 0045-7825,
Document,
LinkCited by: Capítulo 1,
Redes Neurais para Equações Diferenciais.
[RPK19]M. Raissi, P. Perdikaris, and G.E. Karniadakis (2019)Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics378, pp. 686–707.
External Links: ISSN 0021-9991,
Document,
LinkCited by: Capítulo 1,
Redes Neurais para Equações Diferenciais.
[VBB22]S. R. Vadyala, S. N. Betgeri, and N. P. Betgeri (2022)Physics-informed neural network method for solving one-dimensional advection equation using pytorch.
Array13, pp. 100110.
External Links: ISSN 2590-0056,
Document,
LinkCited by: Capítulo 1,
Redes Neurais para Equações Diferenciais.
Envie seu comentário
Aproveito para agradecer a todas/os que de forma assídua ou esporádica contribuem enviando correções, sugestões e críticas!