Ajude a manter o site livre, gratuito e sem propagandas. Colabore!
Referências
[1]
Beale, E. M. L.. On Minimizing a Convex Function Subject to Linear Inequalities, Journal of the Royal Statistical Society: Series B (Methodological), vol. 17, 1995, pp. 173-184. DOI: https://doi.org/10.1111/j.2517-6161.1955.tb00191.x
[3]
Davis, J. P. & Rabinowitz, P.. Methods of Numerical Integration, Academic Press, Inc., 2. ed., 1984.
[4]
Goldstein, A. A. & Price, J. F.. On Descent from Local Minima, Mathematics of Computation, vol. 25, 1971, pp. 569-574. DOI: https://doi.org/10.2307/2005219
[5]
Golub, G. & Van Loan, C.F.. Matrix Computations, The Johns Hopkins University Press, 4. ed., 2013.
[6]
Kelley, C.T.. Iterative Methods for Optimization, Society for Industrial and Applied Mathematics, 1999.
[7]
Nocedal, J. & Wright, S. J.. Numerical Optimization, 2. ed., Springer, 2006. ISBN: 978-0387-30303-1
Ajude a manter o site livre, gratuito e sem propagandas. Colabore!
Referências
[1]
Beale, E. M. L.. On Minimizing a Convex Function Subject to Linear Inequalities, Journal of the Royal Statistical Society: Series B (Methodological), vol. 17, 1995, pp. 173-184. DOI: https://doi.org/10.1111/j.2517-6161.1955.tb00191.x
[3]
Davis, J. P. & Rabinowitz, P.. Methods of Numerical Integration, Academic Press, Inc., 2. ed., 1984.
[4]
Goldstein, A. A. & Price, J. F.. On Descent from Local Minima, Mathematics of Computation, vol. 25, 1971, pp. 569-574. DOI: https://doi.org/10.2307/2005219
[5]
Golub, G. & Van Loan, C.F.. Matrix Computations, The Johns Hopkins University Press, 4. ed., 2013.
[6]
Kelley, C.T.. Iterative Methods for Optimization, Society for Industrial and Applied Mathematics, 1999.
[7]
Nocedal, J. & Wright, S. J.. Numerical Optimization, 2. ed., Springer, 2006. ISBN: 978-0387-30303-1